9,567 research outputs found

    New Symmetries in Crystals and Handed Structures

    Full text link
    For over a century, the structure of materials has been described by a combination of rotations, rotation-inversions and translational symmetries. By recognizing the reversal of static structural rotations between clockwise and counterclockwise directions as a distinct symmetry operation, here we show that there are many more structural symmetries than are currently recognized in right- or left-handed handed helices, spirals, and in antidistorted structures composed equally of rotations of both handedness. For example, though a helix or spiral cannot possess conventional mirror or inversion symmetries, they can possess them in combination with the rotation reversal symmetry. Similarly, we show that many antidistorted perovskites possess twice the number of symmetry elements as conventionally identified. These new symmetries predict new forms for "roto" properties that relate to static rotations, such as rotoelectricity, piezorotation, and rotomagnetism. They also enable symmetry-based search for new phenomena, such as multiferroicity involving a coupling of spins, electric polarization and static rotations. This work is relevant to structure-property relationships in all material structures with static rotations such as minerals, polymers, proteins, and engineered structures.Comment: 15 Pages, 4 figures, 3 Tables; Fig. 2b has error

    Alginate inhibits iron absorption from ferrous gluconate in a randomized controlled trial and reduces iron uptake into Caco-2 cells

    Get PDF
    Previous in vitro results indicated that alginate beads might be a useful vehicle for food iron fortification. A human study was undertaken to test the hypothesis that alginate enhances iron absorption. A randomised, single blinded, cross-over trial was carried out in which iron absorption was measured from serum iron appearance after a test meal. Overnight-fasted volunteers (n=15) were given a test meal of 200g cola-flavoured jelly plus 21 mg iron as ferrous gluconate, either in alginate beads mixed into the jelly or in a capsule. Iron absorption was lower from the alginate beads than from ferrous gluconate (8.5% and 12.6% respectively, p=0.003). Sub-group B (n=9) consumed the test meals together with 600 mg calcium to determine whether alginate modified the inhibitory effect of calcium. Calcium reduced iron absorption from ferrous gluconate by 51%, from 11.5% to 5.6% (p=0.014), and from alginate beads by 37%, from 8.3% to 5.2% (p=0.009). In vitro studies using Caco-2 cells were designed to explore the reasons for the difference between the previous in vitro findings and the human study; confirmed the inhibitory effect of alginate. Beads similar to those used in the human study were subjected to simulated gastrointestinal digestion, with and without cola jelly, and the digestate applied to Caco-2 cells. Both alginate and cola jelly significantly reduced iron uptake into the cells, by 34% (p=0.009) and 35% (p=0.003) respectively. The combination of cola jelly and calcium produced a very low ferritin response, 16.5% (p<0.001) of that observed with ferrous gluconate alone. The results of these studies demonstrate that alginate beads are not a useful delivery system for soluble salts of iron for the purpose of food fortification

    High-resolution computed tomography reconstructions of invertebrate burrow systems

    Get PDF
    The architecture of biogenic structures can be highly influential in determining species contributions to major soil and sediment processes, but detailed 3-D characterisations are rare and descriptors of form and complexity are lacking. Here we provide replicate high-resolution micro-focus computed tomography (μ-CT) data for the complete burrow systems of three co-occurring, but functionally contrasting, sediment-dwelling inter-tidal invertebrates assembled alone, and in combination, in representative model aquaria. These data (≤2,000 raw image slices aquarium−1, isotropic voxel resolution, 81 μm) provide reference models that can be used for the development of novel structural analysis routines that will be of value within the fields of ecology, pedology, geomorphology, palaeobiology, ichnology and mechanical engineering. We also envisage opportunity for those investigating transport networks, vascular systems, plant rooting systems, neuron connectivity patterns, or those developing image analysis or statistics related to pattern or shape recognition. The dataset will allow investigators to develop or test novel methodology and ideas without the need to generate a complete three-dimensional computation of exemplar architecture

    The GAPS Experiment to Search for Dark Matter using Low-energy Antimatter

    Full text link
    The GAPS experiment is designed to carry out a sensitive dark matter search by measuring low-energy cosmic ray antideuterons and antiprotons. GAPS will provide a new avenue to access a wide range of dark matter models and masses that is complementary to direct detection techniques, collider experiments and other indirect detection techniques. Well-motivated theories beyond the Standard Model contain viable dark matter candidates which could lead to a detectable signal of antideuterons resulting from the annihilation or decay of dark matter particles. The dark matter contribution to the antideuteron flux is believed to be especially large at low energies (E < 1 GeV), where the predicted flux from conventional astrophysical sources (i.e. from secondary interactions of cosmic rays) is very low. The GAPS low-energy antiproton search will provide stringent constraints on less than 10 GeV dark matter, will provide the best limits on primordial black hole evaporation on Galactic length scales, and will explore new discovery space in cosmic ray physics. Unlike other antimatter search experiments such as BESS and AMS that use magnetic spectrometers, GAPS detects antideuterons and antiprotons using an exotic atom technique. This technique, and its unique event topology, will give GAPS a nearly background-free detection capability that is critical in a rare-event search. GAPS is designed to carry out its science program using long-duration balloon flights in Antarctica. A prototype instrument was successfully flown from Taiki, Japan in 2012. GAPS has now been approved by NASA to proceed towards the full science instrument, with the possibility of a first long-duration balloon flight in late 2020. Here we motivate low-energy cosmic ray antimatter searches and discuss the current status of the GAPS experiment and the design of the payload.Comment: 8 pags, 3 figures, Proc. 35th International Cosmic Ray Conference (ICRC 2017), Busan, Kore

    The global dynamics of RNA stability orchestrates responses to cellular activation

    Get PDF
    Transcriptomics is used to quantify changes in accumulated levels of mRNAs following cellular activation. These changes arise from the opposing fluxes of transcription and mRNA decay, both of which affect the functional dynamics of global gene expression. A study published recently in BMC Genomics focuses on the contribution made by mRNA stability in shaping the kinetics of gene responses in mammalian cells

    Shoulder pain due to cervical radiculopathy: an underestimated long-term complication of herpes zoster virus reactivation?

    Get PDF
    Purpose To evaluate if herpes zoster virus (HZV) reactivation may be considered in the aetiology of cervical radiculopathy. Methods The study group was composed of 110 patients (52 M-58F;mean age ± SD:46.5 ± 6.12; range:40-73) with a clinical diagnosis of cervical radiculopathy. Patients with signs of chronic damage on neurophysiological studies were submitted to an X-ray and to an MRI of the cervical spine in order to clarify the cause of the cervical radiculopathy and were investigated for a possible reactivation of HZV; HZV reactivation was considered as “recent” or “antique” if it occurs within or after 24 months from the onset of symptoms, respectively. Data were submitted to statistics. Results Thirty-eight patients (34,5%,16 M-22F) had a history of HZV reactivation: four (2 M-2F) were “recent” and 34 (14 M-20F) were “antique”. In 68 of 110 participants (61,8%,30 M-38F), pathological signs on X-ray and/or MRI of the cervical spine appeared; in the remaining 42 (38,2%,22 M-20F) X-ray and MRI resulted as negative. Among patients with HZV reactivation, seven (18,4%) had a “positive” X-ray-MRI while in 31 (81,6%) the instrumental exams were considered as negative. The prevalence of “antique” HZV reactivations was statistically greater in the group of patients with no pathological signs on X-ray/MRI of the cervical spine with respect to the group with a pathological instrumental exam (p < 0.01). Conclusions It may be useful to investigate the presence of a positive history of HZV reactivation and to consider it as a long-term complication of a cervical root inflammation especially in patients in which X-ray and MRI of the cervical spine did not show pathological findings
    corecore